<img height="1" width="1" style="display:none;" alt="" src="https://px.ads.linkedin.com/collect/?pid=3696924&amp;fmt=gif">
Skip to main content

An article about time-gated Raman in the Analytical Methods

Analytical Methods published an article with the title of "Chemical analysis using 3D printed glass microfluidics". Time-gated Raman spectroscopy was used in this research to measure Raman spectra of cyclohexane and ethyl acetate through the channel of the microreactor device. Below is the abstract and free access to  the study can be found in Royal Society of Chemistry.

Abstract

 

Additive manufacturing (3D printing) is a disruptive technology that is changing production systems globally. In addition, microfluidic devices are increasingly being used for chemical analysis and continuous production of chemicals. Printing of materials such as polymers and metals is already a reality, but additive manufacturing of glass for microfluidic systems has received minor attention. We characterize microfluidic devices (channel cross-section dimensions down to a scale of 100 μm) that have been produced by additive manufacturing of molten soda-lime glass in tens of minutes and report their mass spectrometric and Raman spectroscopic analysis examples. The functionality of a microfluidic glass microreactor is shown with online mass spectrometric analysis of linezolid synthesis. Additionally, the performance of a direct infusion device is demonstrated by mass spectrometric analysis of drugs. Finally, the excellent optical quality of the glass structures is demonstrated with in-line Raman spectroscopic measurements. Our results promise a bright future for additively manufactured glass microdevices in diverse fields of science.

Share this article:

Related articles

Placeholder

Subscribe to our newsletter

Stay on top of the latest news and blogs by subscriping to our mailing list.